

SunGuide® Software System

Database Storage
Guidelines

Version 3.0

October 6, 2011

Prepared for:
Florida Department of Transportation
Intelligent Transportation Systems Program
605 Suwannee Street, M.S. 90
Tallahassee, Florida 32399-0450
(850) 410-5600

DOCUMENT CONTROL PANEL
File Name 2011-07-01_SunGuide_Database_Storage_Guidelines_v2-4.docx

File Location
T:\Public\ITS\Software\SunGuide Software\Support\Database\Database
Storage Guidelines\2011-07-
01_SunGuide_Database_Storage_Guidelines_v2-4.docx

Version Number 2.4

Name Date
Created By: Steve Novosad, PBS&J 9/9/2010

Reviewed By: TJ Hapney, PBS&J 9/28/2010

 Karen England, PBS&J 01/13/2011

 Clay Packard, Atkins 05/03/2011

 Arun Krishnamurthy, FDOT 05/23/2011

 Karen England, Atkins 05/24/2011

 Robert Heller, SwRI 06/23/2011

 Mark Laird, AECOM 08/04/2011

 Karen England, Atkins 01/22/2013

Modified By: Clay Packard, PBS&J 9/27/2010

 TJ Hapney, PBS&J 9/28/2010

 Steve Novosad, PBS&J 9/29/2010

 TJ Hapney, PBS&J 9/29/2010

 Steve Novosad, PBS&J 11/29/2010

 Brian Ritchson, MCGI 3/31/2011

 Brian Ritchson, MCGI 05/03/2011

 Clay Packard, Atkins 05/03/2011

 Brian Ritchson, MCGI 05/23/2011

 Clay Packard, Atkins 05/23/2011

 Brian Ritchson, Atkins 06/28/2011

 Clay Packard, Atkins 07/01/2011

 Clay Packard, Atkins 10/06/2011

Completed By: Karen England, Atkins 01/22/2013

SunGuide® Software System
Database Storage Guidelines

Version 3.0 i

Table of Contents

1	
 Problem Statement and Purpose of Document 1	

2	
 Database Issues .. 2	

2.1	
 Database Schemas Analysis .. 2	

2.1.1	
 FDOT_OWN Analysis ... 3	

2.1.2	
 FDOT_ODS Analysis ... 5	

2.2	
 Configuration Records: Footprint 1589 ... 10	

2.3	
 Travel Time ... 12	

2.4	
 Data Table Purge Scripts .. 12	

3	
 Backup and Archiving ... 13	

3.1	
 Archive Guidelines .. 13	

3.1.1	
 Database Size .. 14	

3.1.2	
 Tables ... 14	

3.1.3	
 Backup Guidelines .. 15	

4	
 Compression .. 18	

5	
 Conclusion/Summary/Recommendations ... 18	

5.1	
 Central Office Recommendations .. 18	

5.2	
 District Recommendations ... 19	

List of Tables

Table 1.1: Database Physical Sizes by District .. 1	

Table 2.1: FDOT_OWN Largest Deployment Database Tables ... 4	

Table 2.2: FDOT_ODS Largest Deployment Database Tables .. 7	

Table 2.3: SunGuide Software Tables Purge Configuration ... 12	

List of Appendices

Appendix A: Deployment Questionnaire .. A-1	

SunGuide® Software System
Database Storage Guidelines

Version 3.0 ii

List of Acronyms

CDW .. Central Data Warehouse
DBMS .. Database Management System
DMS .. Dynamic Message Sign
FDOT .. Florida Department of Transportation
FTE .. Florida’s Turnpike Enterprise
IT .. Information Technology
LMT ... Locally Managed Tablespace
SQL ... Structured Query Language
TERL ... Traffic Engineering Research Laboratory
TSS ... Traffic Sensor Subsystem

SunGuide® Software System
Database Storage Guidelines

Version 3.0 1

1 Problem Statement and Purpose of Document

The database is a critical component of the SunGuide® software system. It fulfils several
supporting activities including the primary role of persistent configuration data storage, such as
the existence of devices and their communication parameters. Another activity is the
computation and storage of operational data that may be reused in an operational fashion, such as
Road Ranger locations and event details data. Archiving historical data is not as critical to
operations; however, it is a part of the operations database. Thus, it is critical to maintain the
health of the database and ensure that archiving data does not impact the other functions.

The database storage and archival analysis performed on the SunGuide software database is
based on the existing District databases installed at the Traffic Engineering Research Laboratory
(TERL). These databases were used to:

• Examine the database schemas design,

• Identify inefficiencies and their cause, and

• Provide recommendations that can be implemented to help eliminate these inefficiencies,
reduce the probability of poor database performance (SunGuide software system and
reporting) and data loss, and reduce the complexity of adding additional data elements to
the database schemas.

There are several existing issues that have already been identified, including significantly large
District database file sizes that cause issues in day-to-day operations and significant problems
during a SunGuide software upgrade as well as slow running reports due to inefficient database
design and extremely large table sizes.

Table 1.1 shows the total District database file sizes as of the beginning of 2011.

Table 1.1: Database Physical Sizes by District

District Size (in Gigabytes)1
District 1 24.2
District 2 41.8
District 3 6.97
District 4 79.5
District 5 250.0
District 6 63.2
District 7 10.5
Florida’s Turnpike Enterprise (FTE) 44.6

SunGuide® Software System
Database Storage Guidelines

Version 3.0 2

 Note: 1 refers to sizes of databases. These values were measured from a reproduced database environment which
may introduce variations from the production environment.

The highest known risk to the SunGuide software database, which has not been sufficiently
addressed, is table growth; other more frequent, but less critical, issues occur that are handled by
SunGuide software support. However, table growth is a non-urgent but very important issue for
the long term that warrants investigation and mitigation to avoid any impact to the overall
SunGuide software system. This issue is discussed in more detail in this document; strategies and
considerations are proposed to address it. One specific area of interest is the storage of travel
times. This function alone is a major contributor of the overall size of the SunGuide software
database. There is also another specific issue related to travel times that is discussed due to its
severe impact on reporting travel times.

After addressing the specific size and travel time-related issues, the overall health of the
SunGuide software database is discussed in terms of backup and archiving strategies. This topic
is addressed in a way to provide helpful guidance while respecting the operational differences in
the information technology (IT) management groups amount the Districts. This document
concludes with the solicitation of feedback in order to more fully address the size, safety, and
health of the SunGuide software database throughout the state.

2 Database Issues

There are several issues that were investigated as a part of this analysis. Firstly, the schemas and
their sizes were looked at and analyzed first, providing both a good overview of the database
structure as well as some issues to address. Then, there were three additional, more specific
issues that were also looked at.

2.1 Database Schemas Analysis

An analysis of a snapshot of the District databases housed at the TERL was performed to
determine which tables have the greatest impact on the database due to size. These snapshots
were obtained from the Districts from March to May of 2010. Both the FDOT_OWN and
FDOT_ODS schemas were analyzed.

FDOT_OWN is the database used by SunGuide software in its normal day-to-day operations.
This database stores data such as configurations, travel times, events/incidents, traffic sensors,
etc. Many of the tables are static and rarely change in size since they store configuration data.
Other tables, such as those related to events, grow significantly due to the large number of
transactions that take place.

FDOT_ODS is the schema in the SunGuide software database used to archive data for future
analysis and reporting. This database stores data such as traffic sensors, travel times, and

SunGuide® Software System
Database Storage Guidelines

Version 3.0 3

dynamic message sign (DMS) data. Many of these tables grow rapidly, likely due to the number
of traffic sensors deployed by a District and/or the frequency that travel times are calculated.

2.1.1 FDOT_OWN Analysis

Table 2.1 illustrates the table sizes from FDOT_OWN for each District. District 5 was chosen as
the baseline for the table size due to the large amount of equipment it maintains. The ten largest
tables for District 5 were found, for the most part, to be the same as those in other Districts, but
in a different order according to size. Due to each District’s different focus for SunGuide
software, the order of the tables is different.

The top number in each cell is the number of rows that are contained in the tables. The bottom
number is the estimated size of the table in bytes. The size was calculated based on the average
row length reported from the Oracle Database Management System. The largest table for each
District is highlighted in yellow.

SunGuide® Software System
Database Storage Guidelines

Version 3.0 4

Table 2.1: FDOT_OWN Largest Deployment Database Tables

Deployment / Table Name District 1 District 2 District 4 District 5 District 6 District 7 FTE

DA_DEVICE_STATUS (Rows)
 (Bytes)

183,352
18,518,552

1,345,530
137,244,060

302,408
31,752,840

1,301,774
131,479,17

4

1,175,118
113,986,446

772,779
80,369,016

223,505
22,797,510

EM_EVENT_CHRONO 144,584
28,193,880

486,991
84,736,434

2,667,685
485,518,670

515,605
93,840,110

1,794,633
326,623,206

(see note below)

1,124,233
203,486,173

108,353
21,020,482

EMAUDT_EVENT_RESPONDER 235,214
17,405,836

651,588
48,217,512

5,999,455
455,958,580

836,743
61,082,239

3,447,138
261,982,488

1,809,192
139,307,784

189,785
15,752,155

IDS_INCIDENT_ALARM 3,479
313,110

1,241
134,028

128,567
15,556,607

449,648
51,259,872

3,451
393,414

13,383
856,512

444,845
50,267,485

EM_EVENT_RESPONDER 206,925
12,001,650

577,709
33,507,122

5,714,454
348,581,694

755,286
45,317,160

3,190,652
85,057,816

1,634,024
101,309,488

174,774
12,059,406

CCTV_LOCK_USAGE 100,210
6,814,280

341,168
18,081,904

2,819,604
140,980,200

612,203
39,793,195

2,901,675
145,083,750

478,483
27,752,014

325,958
21,187,270

EMAUDT_EVENT 66,140
9,987,140

175,881
25,150,983

1,061,294
163,439,276

221,931
32,623,857

739,168
116,049,376

400,616
60,493,016

47,695
7,297,335

EMAUDT_EVENT_LOCATION 25,171
7,073,051

83,900
21,981,800

576,639
167,801,949

119,588
31,092,880

258,673
73,463,132

194,168
50,677,848

20,556
5,981,796

IDS_TSS_ALARM_DATA 0
0

27
1,323

23
1,357

418,896
30,579,408

0
0

13,383
1,070,640

418,863
30,158,136

AVLRR_VEHICLE_HISTORY 16,299
847,548

12,453
560,385

355,701
19,919,256

184,489
16,972,988

30,097
1,414,559

1,728,832
124,475,904

961,376
75,948,704

Note: The largest table for District 6 was EVENT_HISTORY_ENTRY, which was not used by the other Districts with the exception of District 7. This implies
that there is an inconsistency in the database schema for the Districts. In fact, the number of tables in the database for each District varies from 246 to 370 with
no two Districts having the same number of tables. Some of this variability is due to tables created by Districts for use by local applications developed and
supported by the District.

SunGuide® Software System
Database Storage Guidelines

Version 3.0 5

Table 2.1 provides a ranking of the largest tables for each deployment based on the total number
of bytes (number of rows times average row length) for a table. The tables utilized were the ten
largest tables from the District 5 database. Analysis shows that the largest five tables on average
for all deployments are:

• EM_EVENT_CHRONO
• EMAUDT_EVENT_RESPONDER
• DA_DEVICE_STATUS
• EMAUDT_EVENT
• CCTV_LOCK_USAGE

The largest table for each District, highlighted in yellow, ranges in size from about 30 megabytes
to almost 500 megabytes for each deployment. There are additional tables with similar byte
volumes for several deployments. While none of the tables are overly large, there are some
potential pitfalls that could develop over time if nothing is done to maintain the database. For
example, the database could reach capacity. As a database reaches its maximum thresholds,
commands will fail and produce errors that would not normally occur. If the database is not
periodically optimized (i.e., indexes updated, tables reorganized), its performance will degrade
over time. For example, if a table has millions of rows and has not been reorganized and the
index recreated, it is possible that the database would have to perform a sequential row-by-row
scan to find requested data. This type of scan could result in extremely long delays in obtaining
the requested information.

The inconsistent growth of the tables is due to District operational differences. The Districts use
SunGuide software in a variety of ways to manage their roadways and provide meaningful data
to the operators. The tables in FDOT_OWN that are continually growing are tables that are not
archived or periodically purged. The Districts need to examine these tables and determine the
length of time they need the data to be maintained either for their operations or for data retention
requirements and initiate a process to purge data that is older than the defined timeframe.
Alternatively, the Districts could request that these tables be added to the Data Archive and
stored long-term in a remote location such that the tables of the operational database could be
kept as small as possible and older data could be moved to an archive database.

2.1.2 FDOT_ODS Analysis

Table 2.2 illustrates the table sizes from FDOT_ODS for each District. District 6 was selected as
the baseline for the table sizes. Since most Districts have only 15 tables in the FDOT_ODS
databases, with the exception of Districts 4 and 5 and since the table sizes reduce drastically after
the first five to six tables, the analysis focuses on these first six tables.

SunGuide® Software System
Database Storage Guidelines

Version 3.0 6

This difference in table sizes again demonstrates how each District uses SunGuide software for
its specific needs. The top number in each cell is the number of rows contained in the tables. The
bottom number is the estimated size of the table in bytes. The size was calculated based on the
average row length reported from the Oracle Database Management System.

SunGuide® Software System
Database Storage Guidelines

Version 3.0 7

Table 2.2: FDOT_ODS Largest Deployment Database Tables

Deployment / Table Name District 1 District 2 District 5 District 6 District 7 FTE

ODS_TSS_LANES (Rows)
 (Bytes)

960,519
79,723,077

1,198,737
62,334,324

1,203,055
91,432,180

4,370,421
288,447,786

63,999
4,479,930

1,037,541
70,552,788

ODS_TSS_LANE_POLL_DATA 17,940,645
1,847,886,435

33,744,246
3,205,703,370

51,752,139
5,175,213,900

71,993,380
6,695,384,340

19,926,722
2,012,598,922

34,671,294
3,155,087,754

ODS_TSS_ROLLUP_DATA 83,313,781
4,249,002,831

207,818,606
10,598,748,906

100,378,962
5,119,327,062

52,086,928
2,656,433,328

26,943,366
1,347,168,300

16,599,054
780,155,538

ODS_TRAVEL_TIME_INFO 6,640,227
398,413,620

44,508,891
2,581,515,678

646,904,627
31,698,326,723

30,267,630
2,209,536,990

48,837,584
3,272,118,128

3,014,310
207,987,390

ODS_TSS_ROADWAY_LINKS 496,471
34,256,499

374,985
21,749,130

655,746
46,557,966

1,422,761
88,211,182

27,932
2,039,036

437,518
31,938,814

ODS_DMS_MESSAGES 93,000
14,136,000

654,903
80,553,069

8,939,137
1,206,783,495

656,455
59,080,950

1,194,344
181,540,288

7,489
561,675

ODS_TRAVEL_TIME_LINK 529
60,306

1,536
90,624

26,720
2,217,760

13,435
1,222,585

4,465
339,340

1,091
79,643

ODS_TSS_DETECTOR_CONFIGS 217
14,756

839
115,782

1,383
182,556

1,464
184,464

2,181
287,892

2,176
295,936

ODS_DMS_IDS 53
2,385

66
1,980

239
10,516

109
3,161

83
2,988

182
6,734

ODS_DMS_LINKS 32
576

52
884

151
3,020

45
765

144
2,592

10
180

Note: District 4 has no tables in the FDOT_ODS tables. District 6 does not include the ODS_TSS_TAG_READS table. All other
Districts have the same schema for the FDOT_ODS database.

SunGuide® Software System
Database Storage Guidelines

Version 3.0 8

Table 2.2 shows similar statistics as the tables in the FDOT_ODS schema. Sizes for the largest of
these tables range from two or three gigabytes upward to 30 gigabytes for each deployment.

Should these tables contain duplicate data or should tables contain duplicate rows, the
performance of FDOT_ODS will be affected. The already large volume of data and the addition
of complex queries that perform multiple joins, combined with duplicate data could cause the
database performance to be extremely poor. Footprints issue 1589, discussed later in this
document, is an example of the type of problem that can occur when data is duplicated.

The Data Archive Subsystem is the active SunGuide software module responsible for populating
and purging data in these tables. Data Archive performs purging based on configuration
parameters. The default and typically used configuration parameters for maintaining this data are
as follows:

• For raw traffic sensor subsystem (TSS) data, the default value for maintaining the data is
14 days.

• For roll up data, the default value for maintaining the data is three years.

These default values accumulate large amounts of data. Maintaining this database will require
that regular maintenance procedures be performed. Since the raw data is being constantly
inserted into the database as well as having one day’s worth of data deleted each day, these tables
will need to be reorganized and re-indexed on a periodic basis. Performing these activities will
allow the database engine to more effectively manipulate the data as the tables are modified.

For data stored in the roll up tables, very large amounts of data will be accumulated. Some of the
challenges of storing this volume of data are:

• Accessing the data to generate reports in a reasonable time frame,
• Providing logical space,
• Providing physical space,
• Deleting large amounts of data, and
• Maintaining (reorganizing) the database.

With the large volume of data potentially stored in the roll up tables, queries and reports will
have to be carefully designed to take advantage of the ability of the database engine to optimize
the queries. Complex queries, such as joining multiple tables, are not recommended due to the
potential size of the dataset that will be returned. It is possible that the database engine could
require more memory or temporary table space than is available to determine what dataset is to
be returned.

SunGuide® Software System
Database Storage Guidelines

Version 3.0 9

When designing the logical layout of the database, one must consider how much logical space
will be required and how often the database will have to extend its logical space to accommodate
the amount of data it is storing. As the amount of data grows, the database engine may have to
extend itself, thus adding more logical space. As tables grow in size, it is possible that a table
may reside on more than one data file. While this is not a critical issue in and of itself, it can
cause the database engine to have the table reside on different locations on the hard drive
requiring more physical seeks on the disk and potentially affecting performance.

As part of the database planning and design, the physical space allocated for the database is
crucial. In many cases, if the database runs out of physical size (i.e., can no longer logically
extend), then the database most likely will have to be rebuilt, requiring the data from the existing
database to be exported and then imported into the new database. This process is time consuming
and expensive to perform. Careful planning must be done when allocating the database’s
physical size.

When large amounts of data are deleted, the transactions must be carefully planned. Deleting
thousands or millions of rows of data may cause the database to perform poorly or cease to
function. The result of these types of large transactions may affect the performance of the
database following the completion of the transaction. The affected tables should be reorganized
to create a situation where these tables are optimized for query execution. During mass deletion,
if logging is not turned off, the log may fill up causing the database to potentially halt execution
or return an error that it could not delete the data. This condition can occur because every delete
would be recorded in the log; typically, log files are not designed to handle this type of large
transaction. In addition, databases use temporary (undo) space to record the activity until it is
committed. If the commits are not properly placed in the overall transaction, the temporary space
could fill up causing the database engine to return an error and all of the transaction would be
rolled back and no work committed.

There are several solutions to this issue. Instead of deleting millions of rows, the administrator
could insert the rows to be kept into a temporary table. Once the temporary table is created, the
original table could be truncated. The truncate command is functionally identical to delete except
it deletes all rows and does so by de-allocating the associated data blocks. After the original table
is truncated, the administrator would insert the rows from the temporary table back into the
original table. This method is quicker, reduces logging, and puts much less data into the undo
table. There are some cases where this method cannot be used, such as when the table is
referenced by a foreign key restraint. In this case, an alternative method is to use a script that
deletes rows in batches rather than all at once. This has the advantage of reducing the amount of
data put into the undo table, but it is not nearly as fast as the first solution.

Within a database, if there are tables that are constantly changing (i.e., data being inserted and
deleted) over time, these tables will become fragmented and perform poorly. The applications

SunGuide® Software System
Database Storage Guidelines

Version 3.0 10

interfacing with the database should be examined to determine what impact they will have on
tables. If tables are identified that are constantly modified, then these tables are good candidates
for optimization/reorganization. Tables that are constantly modified with a large number of rows
can cause poor performance even if they have indexes built on them. The reason for the poor
performance is that tables are initially built in index sequential order; meaning that the rows are
organized in sequential order based on the index. As rows are deleted, holes start to appear in the
order, and as data is inserted it may be placed at the end of the table or it may be placed into one
of the holes left from a deletion. This action is determined by the database engine. Eventually the
table will become fragmented and queries executed against the table will take much longer
because of the method by which the database engine has to search for the requested data. In order
to minimize this fragmentation, these tables should be identified and regularly
optimized/reorganized. When an optimization/reorganization is performed, the index is dropped;
the data is unloaded from the table; the table is dropped and recreated; the data is reloaded in
index sequential order; and the index is recreated. Depending on the volatility of the changes to a
table, an optimization/reorganization may need to be performed as frequently as daily or as
infrequently as once a month. Typically, reorganization requires that the database be taken
offline because of the intensive database operations required to perform the reorganization.

Although these actions are necessary, there is an automated solution that comes close to
removing all Oracle-based fragmentation. The District databases use locally managed
tablespaces (LMT). This is the preferred setting for tablespace management. Currently, the
extent allocation for almost all tables is controlled by the Oracle system, meaning that when a
table needs to allocate a new extent, the system performs some calculations and chooses what it
determines to be the correct size. By changing this setting to uniform extent allocation, there is
only one size for every extent in that tablespace. Uniform extent allocation, in combination with
LMT, eliminates almost all Oracle-based fragmentation. It is important to specify “Oracle-based
fragmentation” because once Oracle outputs to the disk it is up to the operating system to decide
how to store the data. In order to implement this solution all tablespaces would need to have their
data preserved, contents dropped and recreated, and data reinserted as there is no way to alter this
setting once a table is created. Database maintenance, optimization, and reorganization will still
be necessary, but implementing this change will reduce the need significantly.

There is no current data showing this fragmenting issue occurring in SunGuide software
currently; however, it is important for the system maintainer to keep this in mind when
configuring and checking the health of the database periodically.

2.2 Configuration Records: Footprint 1589

The Current Data Archive system is responsible for managing how data is stored in the
FDOT_ODS tables for historical data. Data Archive initially creates a configuration record for
each detector, detector link, and each lane within the detector link. This configuration

SunGuide® Software System
Database Storage Guidelines

Version 3.0 11

information describes the configuration, but does not include detected values each time (typically
every 20 or 30 seconds) the detection is performed. As each set of detection values are inserted,
the record storing these values references the records storing the configuration data. The first
time a detection value is inserted, these configuration records are created. For subsequent
detection values inserts, the configuration records are intended to be reused and referenced by
each subsequently inserted detection record. However, this process is failing and a new,
redundant set of configuration records are inserted rather than referencing the original
configuration records. This is causing a tremendous number of redundant configuration records
to be inserted. Some detection lanes have over 17,000 redundant configuration records associated
with them, causing a size issue and, thus, performance issue as described throughout the earlier
sections of this document. Moreover, as a table join is required to extract detection data for
reporting, this issue is causing severe performance problems when running reports that utilize
this data. Currently, when a report is generated for detection or travel time data for a period
greater than three to five days, the time it takes to generate the report overwhelmingly exceeds
the required maximum of one minute. This report generation can take well over 30 minutes, and
in some cases, several hours.

In order to solve this problem, the following needs to be completed sequentially:

1. The defect of creating many, redundant configuration record needs to be resolved in the
Data Archive Subsystem. Once resolved, this issue will be corrected moving forward, but
the historical data will not be corrected.

2. The historical detector data needs to be corrected to properly reference a single, unique
configuration record for each detector, link, and lane (there are three separate
configuration tables for these three types of configuration items). This would require a
database script to perform the following for each detector, line, and lane configuration
record:

A. Find the complete set of identical configuration records;
B. Select one of them to represent the item; and
C. Re-associate all other detection and configuration data records from that item to

use the same configuration record rather than a redundant copy.

3. The purge script should be enhanced to remove all configuration records not being
referenced by other configuration and detection data records. This will remove the
redundant records immediately following the completion of the prior step as well as
remove the configuration records no longer used as old data is purged in the future. After
completion of duplicate entry removal, the tables should also be reorganized as well due
to the many deletions.

SunGuide® Software System
Database Storage Guidelines

Version 3.0 12

2.3 Travel Time

Travel time data storage in the FDOT_ODS is the largest contributor to the SunGuide software
database sizing issues. It would be reasonable to consider the need for storing this data into the
FDOT_ODS and to consider not storing travel time data. Currently, the only purpose of the
travel time data in the FDOT_ODS is to provide a data source for the Crystal Report templates
that display travel times. The need for archiving the travel time data is satisfied via the data
archive flat file. This flat file is much smaller, consumes no Oracle resources, and is much easier
to maintain. A year’s worth or more of the data would fit onto a single DVD for off-site storage.

The need to generate travel time reports must also be considered. The Central Data Warehouse
(CDW) production system is in the concept and high-level design stage and will eventually serve
this function. Specifically, the CDW will retrieve the travel time link configuration from the
Districts and will recreate the travel time calculations based on the same configuration used by
the Districts. A compromise could be to wait until the CDW is online and has proven its ability
to meet this need. Another compromise would be to reduce the amount of data stored by
decreasing the length of time for which data is kept. Typically, three years of travel time data is
kept in the FDOT_ODS for Crystal Reporting; however, one full year - necessary for generating
annual reports - may be sufficient and could be kept while the other two years could be purged.

2.4 Data Table Purge Scripts

Some portions of the SunGuide software data are purged by a script that is launched from the
Data Archive Subsystem. This addressed some of the heavy contributors (as identified in section
2.1); however, there are some tables that are not purged. Table 2.3 shows the list of database
tables that grow indefinitely and whether or not they are currently being purged by the purge
script. The current purge script is executed from a location that is local to the ODS schema and
does not purge any tables in the FDOT_OWN schema, but this concept could easily be applied to
the FDOT_OWN schema as well.

Table 2.3: SunGuide Software Tables Purge Configuration

Table Name Purged?

DA_DEVICE_STATUS No

EM_EVENT_CHRONO No

EMAUDT_EVENT_RESPONDER No

IDS_INCIDENT_ALARM No

EM_EVENT_RESPONDER No

CCTV_LOCK_USAGE No

EMAUDT_EVENT No

EMAUDT_EVENT_LOCATION No

SunGuide® Software System
Database Storage Guidelines

Version 3.0 13

Table Name Purged?

IDS_TSS_ALARM_DATA No

AVLRR_VEHICLE_HISTORY No

ODS_TSS_LANE_POLL_DATA Yes

ODS_TSS_ROLLUP_DATA Yes

ODS_TRAVEL_TIME_INFO Yes

ODS_TSS_LANES No

ODS_TSS_ROADWAY_LINKS No

ODS_DMS_MESSAGES No

ODS_TRAVEL_TIME_LINK No

ODS_511_INFO Yes

ODS_TSS_TAG_READS Yes

3 Backup and Archiving

3.1 Archive Guidelines

Archiving data is an important aspect of maintaining a manageable database. Archiving is the
method of moving data out of the production database and physically storing it somewhere else.
The data is removed from the database, reducing the size of the overall database without
compromising the integrity of the database. Archiving is different from backups because the data
is physically removed from the database; thus, optimizing the database and improving its
performance. There are several questions to consider when planning data archival:

• How large is the database now?
• What are the largest tables?
• Will the tables continue to grow?
• At what rate will the tables grow?
• What are the long-term data storage requirements?

Moving large amounts of data out of the database and then reorganizing the database will
improve the overall performance of the database. Regular monitoring of database performance
will provide insight as to when the database needs attention. However, the most effective way to
maintain database performance is to establish regular maintenance windows. Performing regular
maintenance will provide a more consistent overall database performance.

SunGuide® Software System
Database Storage Guidelines

Version 3.0 14

3.1.1 Database Size

The overall size of the database is a factor in determining how often to archive data. If the
database has never been archived and its size is reasonable, then archiving may not be necessary
more than annually; whereas, if the database is very large, then more regular archiving (i.e.,
monthly, quarterly) should be considered.

3.1.2 Tables

Identifying the largest tables in the database is an important step in the analysis for archiving.
There is no magic number of tables that should be archived; rather a threshold size should be
established and the entire set of tables should be reviewed against that threshold. A typical
threshold could be a table that exceeds a million or more rows. In fact, the threshold could be
several million rows depending on how much data is stored in each row. After comparing the
table sizes to the threshold, the number of tables to archive could be as little as one or as many as
the entire set of tables. While a scenario of having an extremely large static table is rare, if such a
table exists in the database, it likely does not need to be archived because it does not typically
have a lot of transactions (inserts and deletes).

Tables that are archived should also be optimized (reorganized). The rationale for optimizing an
archived table is that the primary index may no longer be effective when the table is queried. In
order to return a table to an optimized state, the table must be reorganized. By performing this
optimization, any queries on this table will return data in as efficient a manner as possible.
Tables that have many inserts and deletes may not necessarily require archiving, but due to the
large amount of activity in the tables, it will be necessary to regularly optimize the table.
Regularly optimizing these tables will provide consistent performance for large queries and
reports.

Performing database reorganization is not an Oracle-specific maintenance activity. The need for
database reorganization has existed since databases were first developed, even before data
management systems. As data is stored in some defined relationship to other data, links are
established to facilitate the retrieval of elements throughout the structure. The database
management system, which in this case is Oracle, must employ some algorithm to search for
space when new elements are added and establish these links. Likewise, the links must be
redefined when elements are deleted. The deletion of elements results in fragmentation of the
disk space, which may or may not be efficiently reused when Oracle adds new elements. This
fragmentation results in both decreased database performance and an increase in the amount of
storage required. Over time, databases become increasingly less efficient as data is added and
deleted. Reorganization is the method that reorders the data and re-establishes the links in the
data in such a way that the fragmentation is eliminated. It results in optimized database
performance and disk space. Oracle Tuning Pack, as one of it functions, assists with optimizing
databases. Using the wizard you step through setting up the database reorganization to create

SunGuide® Software System
Database Storage Guidelines

Version 3.0 15

scripts that can be executed using Oracle Tuning Pack to perform the reorganization. Oracle
Tuning Pack analyzes and rebuilds fragmented indexes and tables, relocates objects to another
tablespace if necessary, and recreates objects with optimal storage attributes. It is recommended
that the database be taken offline to perform the reorganization as there will be a large number of
disk inputs/outputs to locate the data optimally on the disk. Oracle Tuning Pack also provides
the ability to optimize structured query language (SQL) statements by analyzing the current
database schema design and providing recommendations to improve the performance of long
running queries. SQL Access Advisor is another aspect of Oracle Tuning Pack that provides
recommendations to optimize the schema design for maximum performance. SQL Access
Advisor would be used when the schema is initially being designed.

All tables should be analyzed for their potential growth rate. If a table is identified as one that
grows in size frequently, then it will be a candidate for archiving and optimization. If a table is
identified as one that does not grow with regularity, then the table may not need to be archived.
This analysis should be performed for each table that is known to not be static.

As part of the analysis for archiving tables, long-term data requirements must be identified. As
part of this analysis, the amount of data that must be stored online and available for querying and
reporting needs to be identified. If this information is not directly available, then a duration for
storing the data needs to be identified. From the duration information, the amount of data can be
estimated for that timeframe. This analysis should be performed for each table from which the
approximate maximum database size can be estimated. From this analysis, the tables that will
need to be archived can be identified. A strategy for archiving the data will be developed so that
these tables maintain the appropriate data while the older data is archived. Some possible
strategies are archiving data on a daily rolling basis, weekly rolling basis, monthly rolling basis,
etc. The frequency with which the archive is performed will be based on how much data is added
over a specified timeframe.

Based on the data taken for 20 days from Districts 4, 5, and 6, the SunGuide software
FDOT_OWN database average growth will range from 2.5 gigabytes to 5 gigabytes per year.
The variability in growth is due to the different operational differences that the Districts utilize.

3.1.3 Backup Guidelines

There are many options for backing up a database. In order to determine the right backup option,
certain questions must be answered. These answers will shape the backup strategy that best fits
the needs of the TMC.

• How much downtime is acceptable?
• How much are you willing to invest in hardware, software, and backup media?
• Do you require the backup to be automated?

SunGuide® Software System
Database Storage Guidelines

Version 3.0 16

• Backups can affect database performance. Are you willing to accept degraded
performance on occasion?

• Is data primarily persistent with very little change?

As these questions are answered, the database strategy for the TMC will take shape. Answers to
each of these questions are explored in the following sections.

3.1.3.1 ACCEPTABLE DOWNTIME

The amount of acceptable downtime is directly related to the type of backup that should be
performed. If the goal is to have zero downtime, then a hot database backup is a solution to
consider. A hot database backup produces the same results as a cold back up, but the database is
allowed to run normally during this process. This is accomplished by freezing the system change
number of each data file and writing all changes during a backup to the redo logs while the file is
being copied. When the backup completes, Oracle sees that the data file is out of date and
proceeds to apply all necessary updates in the redo log. If a day of downtime is acceptable, then
one might consider performing a monthly database dump (full backup) and perform daily
incremental (backup the log file) backups. Other backup options are:

• Establish a cold backup on standby. A cold backup is one where a backup database
has been established on a backup server. Should the production database server fail,
the latest backup and all incremental backups are restored to the backup database and
the system is pointed to the cold backup database.

• Perform a database dump weekly with six incremental backups.
• Perform a database dump periodically (monthly or weekly) with no incremental

backups.
• Create no database backup.

Establishing acceptable downtime is an important factor for database management and is
inversely proportional to cost. The less downtime allowed, the more expensive the database
backup strategy will be to implement.

3.1.3.2 INVESTMENT

When determining a database backup strategy, one must understand the cost involved when
deciding the approach for backing up and restoring a database. If there is a high uptime
requirement and the chosen solution is to maintain a mirrored database, then the hardware and
software costs could be significant. For example, a tolling system requires essentially 100
percent uptime. Each transaction is executed on a primary and secondary database management
system (DBMS). Should the primary fail, the system is automatically shifted over to the
secondary DBMS. This implementation requires a significant investment in hardware and
software. Hot database backups require no downtime and incur no extra costs. If the database

SunGuide® Software System
Database Storage Guidelines

Version 3.0 17

contains primarily static data, a cold backup may be performed once a month; if the database
fails between backups, it is acceptable to restore the previous month’s database and accept the
potential loss of several days of data.

3.1.3.3 AUTOMATED BACKUPS

Backups are time consuming and are typically performed in off-peak hours. Assigning staff to
perform the backup ties up resources that could be used for other activities. Most backups have
some level of automation to reduce the amount of staff interaction required. The more automated
the backup is, the more the investment is in hardware, software, and media. A completely
automated system could consist of hardware that provides a jukebox of recording media that is
used to backup the database and the software required to perform the backups. This type of
backup strategy would require a large investment in hardware, software, and backup media, but
reduce the staff interaction required to periodically monitor the backups and replace media.

3.1.3.4 BACKUP TIME

A completed database backup can be a resource and time consuming process. During a complete
backup, database performance can be degraded or the database may not be available at all. For
these reasons, complete database backups are usually performed in off-peak hours (late night)
when the demand on the database is low. Incremental backups are less intrusive on database
performance, since these types of backups only create a backup of the current log file. The log
file is closed out, a new log file is started, and the closed out log file is backed up. If incremental
backups do affect performance to the point that the database is a bottleneck, these backups can
also be performed in off hours.

3.1.3.5 DATA VOLATILITY

It is important to understand how, why, and for how long data is stored in the database. There are
three types of data volatility discussed:

• Persistent and rarely changed data,
• Critical and regularly changed data, and
• Nomadic data (data that may change frequently, but is not critical to the operational

success of the system).

Most databases have some combination of the data volatility discussed above. The backup
strategy will be developed based on the database’s primary function for storing the data. Data
that is critical and regularly changes will require a more frequent backup strategy, while data that
rarely changes or is nomadic may require a backup strategy that is periodic in nature.

SunGuide software databases are primarily persistent with small modifications (add new
equipment) and nomadic data, such as speed information on links (periodically updated).

SunGuide® Software System
Database Storage Guidelines

Version 3.0 18

However, it also contains critical and regularly changing data with regards to event management
which is constantly changing and is used in performance measures reporting.

4 Compression

One possible tool for reducing database size is compression. Compression reduces the size of a
portion of the database, but incurs more overhead. Oracle compression can reduce the disk space
used by up to one third. Although throughput is reduced with compression, full table scan speeds
are increased because less data must be pulled into memory. Many reports in SunGuide software
use full table scans, so it is safe to say that compression may benefit SunGuide software
operations in the future. Careful consideration of these performance/storage tradeoffs is required
before any modification to the SunGuide software database can be made.

5 Conclusion/Summary/Recommendations

Throughout this document, recommendations for improving the SunGuide software database are
provided directly or implied. This section compiles the recommendations for improving the
overall health and performance of the database. The recommendations are provided in a list
format for the reader’s convenience:

5.1 Central Office Recommendations

• Consider reducing the retention of travel time data stored in the FDOT_ODS from
three years to one. The data could be preserved by sending it to the CDW or other
long term storage. This change could reduce the size of relevant FDOT_ODS tables
by 66 percent.

• Review the need for storing travel time data in the FDOT_ODS and consider
eliminating this function. Archiving travel time data is accomplished by writing the
data to an archive flat file. Also, consider whether the travel times can be reliably
recreated from historical speed data. ODS_TRAVEL_TIME_LINK and
ODS_TRAVEL_TIME_INFO are the two tables that store travel times. Table 2.2
shows the number of rows and size in bytes in these tables. This information can be
referenced to show the database savings if travel time storage was reduced or
eliminated. District 5 has the most travel time data with over 0.6 billion rows
occupying over 31 GB of storage in their travel times, while FTE only has about 3
million rows occupying 0.2 MB of storage. The variability of different District’s
needs must be considered as well, as the solution may be required to include this as a
configurable option at each SunGuide software deployment.

• Review the storage configuration. One option for older archived data is to move the
data to less expensive storage such as a hard disk directly connected to the server
rather than an expensive SAN drive. Table partitioning could be used such that all of

SunGuide® Software System
Database Storage Guidelines

Version 3.0 19

the data was available fro querying, while a smaller amount of data is in use in the
production system.

• Change the extent allocation for LMTs from system controlled to uniform.
• Remove the daily and hourly intervals from ods_tss_rollup_data since they can be

derived from the 15 minute rollups. This will reduce the amount of data stored in this
table by 20.6 percent while maintaining current data granularity.

• Reduce the number of days maintained in ods_tss_lane_poll_data from 14 to two
days. This change would reduce the table size by 86 percent.

• Enhance the purge scripts to add missing tables from section 2.4. The length of time
to keep data for each table could be individually configured by each District based on
their particular needs.

• Enhance purge scripts for the ability to automatically or manually purge/archive data
based on filters such as on a per detector bases.

• Develop a script or manual procedure to periodically review the health and status of
the database, the amount of available free space in the physical storage, and other
metrics including the frequency of extending tables, etc.

5.2 District Recommendations

• Districts are recommended to have staff with database administration expertise to
support, operate, and maintain the SunGuide software system’s database.

• Tables with frequent inserts and deletions should be reorganized on a periodic basis
to ensure that performance is maximized. Oracle Tuning Pack can be used to assist in
determining which tables require reorganization and in building scripts to perform the
reorganization. Since the database would be unavailable during the reorganization,
the time and frequency of the reorganization should be carefully planned. The
reorganization should be performed in off peak hours, such as late night, and no more
frequently that once a month. This recommendation applies to both database schemas,
FDOT_OWN and FDOT_ODS.

• If a District is not using logging, a full database backup should be performed, logging
initiated, and the log backed up on a daily basis.

• If feasible, in coordination with the reorganization, a complete database backup
should be performed. The previous six months or more of full backups and daily log
backups should be maintained.

• Set detector poll cycles to a minimum of 30 seconds. If the poll cycle was previously
set to 20 seconds before this change, then the size of the ods_tss_lane_poll_data table
would be reduced by 33 percent.

Appendix A

Deployment Questionnaire

SunGuide® Software System
Database Storage Guidelines

Version 3.0 A-1

Appendix A: Deployment Questionnaire
1. What are your current backup methods? For example, do you perform a full backup once

a week and then incremental backups the remaining six days?

2. Where do you store your backups?

3. What do you do with the data archive flat comma separated value files? How long do you
keep the flat files?

4. How long do you keep your data?

5. Would you be interested in storing data off-site, long-term (e.g., CDW)?

6. Are you currently using Oracle Tuning Pack for optimization or reorganization within
your database?

7. What is the maximum acceptable time (which would imply lost data) for your operations
during any of the aforementioned maintenance tasks?

